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Abstract
We connect quantum graphs with infinite leads, and turn them into scattering
systems. We show that they display all the features which characterize quantum
scattering systems with an underlying classical chaotic dynamics: typical
poles, delay time and conductance distributions, Ericson fluctuations, and when
considered statistically, the ensemble of scattering matrices reproduces quite
well the predictions of the appropriately defined random matrix ensembles.
The underlying classical dynamics can be defined, and it provides important
parameters which are needed for the quantum theory. In particular, we derive
exact expressions for the scattering matrix, and an exact trace formula for the
density of resonances, in terms of classical orbits, analogous to the semiclassical
theory of chaotic scattering. We use this in order to investigate the origin of the
connection between random matrix theory and the underlying classical chaotic
dynamics. Being an exact theory, and due to its relative simplicity, it offers new
insights into this problem which is at the forefront of the research in chaotic
scattering and related fields.

PACS numbers: 05.45.Mt, 03.65.Nk, 02.10.Yn

1. Introduction

Quantum graphs of one-dimensional wires connected at nodes had already been introduced
more than half a century ago to model physical systems. Depending on the envisaged
application the precise formulation of the models can be quite diverse and ranges from solid-
state applications to mathematical physics [1–12]. Lately, quantum graphs have also attracted
the interest of the quantum chaos community because they can be viewed as typical and yet
relatively simple examples for the large class of systems in which classically chaotic dynamics
implies universal correlations in the semiclassical limit [13–21]. Up to now we have only a
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limited understanding of the reasons for this universality, and quantum graph models provide
a valuable opportunity for mathematically rigorous investigations of the phenomenon. In
particular, for quantum graphs an exact trace formula exists [12–14] which is based on the
periodic orbits of a mixing classical dynamical system. Moreover, it is possible to express the
two-point spectral correlation functions in terms of purely combinatorial problems [16–19].

By attaching infinite leads at the vertices, we get non-compact graphs, for which a
scattering theory can be constructed [22–24]. They display many of the features that
characterize scattering systems with an underlying chaotic classical dynamics [25–29], and
they are the subject of this paper. The quantum scattering matrix for such problems can
be written explicitly, together with a trace formula for the density of its resonances. These
expressions are the analogues of the corresponding semiclassical approximations available in
the theory of chaotic scattering [25–27], albeit here they are exact. With these tools we analyse
the distribution of resonances, partial delay times, and the statistics of the fluctuating scattering
amplitudes and cross sections. Moreover, we address issues such as the statistical properties
of the ensemble of the scattering matrices, and conductance distribution. Finally, we analyse
the effect of non-uniform connectivity on the statistical properties of the scattering matrix. A
main part of our analysis will be focused on the comparison of the statistical properties of the
above quantities with the random matrix theory (RMT) predictions [30–40].

The paper is structured in the following way. In section 2, the mathematical model is
introduced and the main definitions are given. Section 3 is devoted to the derivation of the
scattering matrix for graphs. The trace formula for the density of resonances of quantum
graphs is presented in section 4 which includes also the analysis of the underlying classical
system. The next section is dedicated to the analysis of various statistical properties of the
S-matrix. Our numerical data are compared both with the predictions of RMT and with the
semiclassical expectations. Finally, in section 6, we analyse the class of star graphs for which
several results can be analytically derived. Our conclusions are summarized in section 7.

2. Quantum graphs: definitions

We start by considering a compact graphG. It consists of V vertices connected by B bonds. The
number of bonds which emanate from each vertex i defines the valency vi of the corresponding
vertex (for simplicity we will allow only a single bond between any two vertices). The graph
is called v-regular if all the vertices have the same valency v. The total number of bonds is
B = 1

2

∑V
i=1 vi . Associated with every graph is its connectivity matrix C. It is a square matrix

of size V whose matrix elements Ci,j take the values 1 if the vertices i, j are connected with
a bond, or 0 otherwise. The bond connecting the vertices i and j is denoted by b ≡ (i, j), and
we use the convention that i < j . It will sometimes be convenient to use the ‘time-reversed’
notation, where the first index is the larger, and b̂ ≡ (j, i) with j > i. We shall also use
the directed bonds representation, in which b and b̂ are distinguished as two directed bonds
conjugated by time reversal. We associate the natural metric with the bonds, so that xi,j (xj,i)

measures the distance from the vertex i (j) along the bond. The lengths of the bonds are
denoted by Lb and we shall henceforth assume that they are rationally independent. The mean
length is defined by 〈L〉 ≡ (1/B)

∑B
b=1 Lb and in all numerical calculations below it will be

taken to be 1. In the directed-bond notation Lb = Lb̂.
The scattering graph G̃ is obtained by adding leads which extend from M (�V ) vertices

to infinity. For simplicity we connect at most one lead to any vertex. The valency of these
vertices increases to ṽi = vi + 1. The M leads are denoted by the index i of the vertex to which
they are attached while xi now measures the distance from the vertex along the lead i.
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The Schrödinger operator (with h̄ = 2m = 1) is defined on the graph G̃ in the following
way: on the bonds b, the components �b of the total wavefunction � are solutions of the
one-dimensional equation(

−i
d

dx
− Ab

)2

�b(x) = k2�b(x) b = (i, j) (1)

where Ab (with Re(Ab) �= 0 and Ab = −Ab̂) is a ‘magnetic vector potential’ which breaks the
time-reversal symmetry. In most applications we shall assume that all the Ab are equal and
the bond index will be dropped. The components of the wavefunctions on the leads, �i(x),
are solutions of

− d2

dx2
�i(x) = k2�i(x) i = 1, . . . ,M. (2)

At the vertices, the wavefunction satisfies boundary conditions which ensure current
conservation. To implement the boundary conditions, the components of the wavefunction on
each of the bonds b and the leads i are expressed in terms of counter propagating waves with
a wave vector k:

on the bonds: �b = ab ei(k+Ab)xb + cb ei(−k+Ab)xb

on the leads: �i = Ii e−ikxi + Oi eikxi .
(3)

The amplitudes ab, cb on the bonds and Ii ,Oi on the lead are related by


Oi

ai,j1

·
ai,jvi


 = �(i)




Ii

cj1,i

·
cjvi

,i


; �(i) =




ρ(i) τ
(i)
j1

· τ
(i)
jvi

τ
(i)

j1
σ̃

(i)

j1,j1
· σ̃

(i)

j1,jvi

· · · ·
τ

(i)
jvi

σ̃
(i)
jvi

,j1
· σ̃

(i)
jvi

,jvi


. (4)

These equalities impose the boundary conditions at the vertices. The vertex scattering matrices
�

(i)
j,j ′ , are ṽi × ṽi unitary symmetric matrices, and j, j ′ go over all the vi bonds and the lead

which emanate from i. The unitarity of �(i) guarantees current conservation at each vertex.
On the right-hand side of (4), the vertex scattering matrix �(i) was written explicitly in

terms of the vertex reflection amplitude ρ(i), the lead–bond transmission amplitudes
{
τ

(i)
j

}
,

and the vi × vi bond–bond transition matrix σ̃
(i)
j,j ′ , which is sub-unitary (|det σ̃ (i)| < 1), due to

the coupling to the leads.
Graphs for which there are no further requirements on the �(i) shall be referred to as

generic. It is often convenient to compute the vertex scattering matrix from a requirement that
the wavefunction is continuous and satisfies Neumann boundary conditions at that vertex [13,
14]. These graphs shall be referred to as Neumann graphs, and the resulting �̃(i) matrices
read [22]:

σ̃
(i)
j,j ′ = 2

ṽ
− δj,j ′ ; τ

(i)
j = 2

ṽ
; ρ(i) = 2

ṽ
− 1. (5)

Vertices which are not coupled to leads have ρi = 1, τ
(i)

j = 0, while the bond–bond

transition matrix σ̃
(i)
j.j ′ = 2

v
− δj,j ′ is unitary.

3. The S-matrix for quantum graphs

It is convenient to first discuss graphs with leads connected to all the vertices M = V . The
generalization to an arbitrary number M � V of leads (channels) is straightforward and will
be presented at the end of this section.
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To derive the scattering matrix, we first write the bond wavefunctions using the two
representations which are conjugated by ‘time reversal’:

�b(xb) = ab ei(k+Ab)xb + cb ei(−k+Ab)xb

�b̂(xb̂) = ab̂ ei(k+Ab̂)xb̂ + cb̂ ei(−k+Ab̂)xb̂ (6)

= ab̂ ei(−k−Ab̂)xb ei(k+Ab̂)Lb + cb̂ ei(−k+Ab̂)Lb ei(k−Ab̂)xb .

Hence,

cb = ab̂ ei(k+Ab̂)Lb ab = cb̂ ei(−k+Ab̂)Lb . (7)

In other words, except for a phase factor, the outgoing wave from the vertex i in the direction
j is identical to the incoming wave at j coming from i.

Substituting ab from equation (7) in equation (4), and solving for ci,j we get

ci,j ′ =
∑
r,s

(1 − S̃B(k; A))−1
(i,r),(s,j)D(s,j)τ

(j)
s Ij Oi = ρ(i)Ii +

∑
j ′

τ
(i)
j ′ cij ′ (8)

where 1 is the 2B × 2B unit matrix. Here, the ‘bond scattering matrix’ S̃b is a sub-unitary
matrix in the 2B-dimensional space of directed bonds which propagates the wavefunctions. It
is defined as S̃B(k,A) = D(k; A)R̃, with

Dij,i′j ′(k,A) = δi,i′δj,j ′ eikLij +iAi,j Lij R̃ji,nm = δn,iCj,iCi,mσ̃
(i)
ji,im. (9)

D(k,A) is a diagonal unitary matrix which depends only on the metric properties of the graph,
and provides a phase which is due to free propagation on the bonds. The sub-unitary matrix R̃

depends on the connectivity and on the bond–bond transition matrices σ̃ . It assigns a scattering
amplitude for transitions between connected directed bonds. R̃ is sub-unitary, since

|det R̃| =
V∏

i=1

|det σ̃ (i)| < 1. (10)

Replacing ci,j ′ in the second of equations (8), we get the following relation between the
outgoing and incoming amplitudes Oi and Ij on the leads:

Oi = ρ(i)Ii +
∑
j ′jrs

τ
(i)

j ′ (1 − S̃B(k; A))−1
(i,r),(s,j)D(s,j)τ

(j)
s Ij . (11)

Combining (11) for all leads i = 1, . . . , V , we obtain the unitary V × V scattering matrix
S(V ),

S
(V )

i,j = δi,j ρ
(i) +

∑
r,s

τ (i)
r (1 − S̃B(k; A))−1

(i,r),(s,j)D(s,j)τ
(j)
s . (12)

Finally, a multiple scattering expansion for the S-matrix is obtained by substituting

(1 − S̃B(k; A))−1 =
∞∑

n=0

S̃n
B(k; A) (13)

into equation (12). The expansion (13) converges absolutely on the real k-axis since for
generic graphs the spectrum of S̃ is strictly inside the unit circle (or else, for k + iε, with ε > 0
arbitrarily small).

The scattering matrix can be decomposed into two parts S(V )(k) = 〈S(V )〉k +Sf l(k) which
are associated with two well-separated time scales of the scattering process. 〈S(V )〉k can
be evaluated by averaging term by term the S-matrix resulting from the substitution of the
multiple scattering expansion (13) in (12). Since all terms, except for the prompt reflections,
are oscillatory functions of k, they average to zero (we assume that the k-window over which
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the averaging is performed is sufficiently large, i.e. larger than 2π/Lmin) and thus we get
that 〈S(V )〉k = SD = δi,j ρ

i . The fluctuating component of the S-matrix, Sf l(k), starts by
a transmission from the incoming lead i to the bonds (i, r) with transmission amplitudes τ (i)

r .
The wave gains a phase ei(k+Ab)Lb for each bond it traverses and a scattering amplitude σ̃ (i)

r,s at
each vertex. Eventually, the wave is transmitted from the bond (s, j) to the lead j with an
amplitude τ

(j)
s . Explicitly,

S
(V )
i,j = δi,j ρ

(i) +
∑

t∈Ti→j

Bt ei(klt +	t) (14)

where Ti→j is the set of trajectories on G̃ which lead from i to j . Bt is the amplitude
corresponding to a path t whose length and directed length are lt = ∑

b∈t Lb and 	t =∑
b∈t LbAb, respectively. Thus the scattering amplitude S

(V )
i,j is a sum of a large number of

partial amplitudes, whose complex interference brings about the typical irregular fluctuations
of
∣∣S(V )

i,j

∣∣2 as a function of k.
One of the basic concepts in the quantum theory of scattering are the resonances. They

represent long-lived intermediate states to which bound states of a closed system are converted
due to coupling to continua. On a formal level, resonances show up as poles of the scattering
matrix S(M) occurring at complex wave numbers κn = kn − i

2�n, where kn and �n are the
position and width of the resonances, respectively. From (12) it follows that the resonances
are the complex zeros of

ζG̃(κ) = det(1 − S̃B(κ; A)) = 0. (15)

The eigenvalues of S̃B are in the unit circle, and therefore the resonances appear in the lower
half of the complex κ plane. Moreover from equation (15) it is clear that their formation is
closely related to the internal dynamics inside the scattering region which is governed by S̃B .

There exists an intimate link between the scattering matrix and the spectrum of the
corresponding closed graph. It manifests the exterior–interior duality [41] for graphs. The
spectrum of the closed graph is the set of wave numbers for which S(V ) has +1 as an eigenvalue.
This corresponds to a solution where no currents flow in the leads so that the conservation of
current is satisfied on the internal bonds. 1 is in the spectrum of S(V ) if

ζG(k) = det[1 − S(V )(k)] = 0. (16)

Equation (16) can be transformed in an alternative form

ζG(k) = det[1 − ρ]
det[1 − D(k)R]

det[1 − D(k)R̃]
= 0 Ri,r;s,j = R̃i,r;s,j + δr,s

τ
(r)
i τ

(r)
j

1 − ρ(r)
(17)

which is satisfied once

det[1 − D(k)R] = 0. (18)

In contrast to R̃, R is a unitary matrix in the space of directed bonds, and therefore the spectrum
is real. Equation (18) is the secular equation for the spectrum of the compact part of the graph,
and it was derived in a different way in [13].

The difference δR = R − R̃ gets smaller as larger graphs are considered (for graphs with
Neumann boundary conditions it is easy to see that the difference is of order 1

v
). That is, the

leads are weakly coupled to the compact part of the graph, and one can use perturbation theory
for the computation of the resonance parameters. To lowest order, (δR = 0), the resonances
coincide with the spectrum of the compact graph. Let kn be in the spectrum. Hence, there
exists a vector |n〉 which satisfies the equation

D(kn)R|n〉 = 1|n〉. (19)
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Figure 1. Poles of the S(V )-matrix for regular Neumann graphs. The exact evaluated poles are
indicated with (◦) while (∗) are the results of the perturbation theory (20): (a) V = 5 and v = 4
and (b) V = 15 and v = 14.

To first order in δR, the resonances acquire a width

δκn = −i
〈n|D(kn)δR|n〉

〈n|L|n〉 . (20)

To check the usefulness of this result, we searched numerically for the true poles for a few
scattering graphs and compared them with the approximation (20). In figure 1, we show the
comparison for fully connected Neumann graphs with V = 5, 15 and A = 0. As expected the
agreement between the exact poles and the perturbative results improves as v increases.

We finally comment that the above formalism can be easily modified for graphs where
not all the vertices are attached to leads. If the vertex l is not attached, one has to set
ρ(l) = 1, τ

(l)
j = 0 in the definition of �(l). The dimension of the scattering matrix is then

changed accordingly.
For the sake of completeness we quote here an alternative expression for the S-matrix

which applies for Neumann graphs, exclusively [14, 24]. For this purpose, we define the
V × V matrix

hi,j (k,A) =
{−∑

m�=i Ci,m cot(kLi,m) i = j

Ci,j e−iAi,j Li,j (sin(kLi,j ))
−1 i �= j

(21)

in terms of which,

S(V ) = (i1 + h(k))−1(i1 − h(k)) (22)

where 1 is the V × V unit matrix. S(V ) is unitary since h(k) is Hermitian.
In the case of graphs connected to leads at an arbitrary set of M < V vertices with indices

{il}, l = 1, . . . ,M , the M ×M scattering matrix S(M) has to be modified in the following way:

S(M) = 2iW(h(k) + iWT W)−1WT − 1. (23)

Here Wil,j = δil ,j is the M × V leads–vertices coupling matrix (W = 1 when M = V ). This
form of the S-matrix is reminiscent of the expression which was introduced by Weidenmüller
to generalize the Breit–Wigner theory for many channels and internal states. However, (23) is
an exact expression which involves no truncations.
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It follows from (23) that in the present case, one can identify the poles of the S-matrix
with the zeros of

ζG̃(κ) = det(h(κ) + iWT W) = 0. (24)

Its main advantage over (15) is that it involves a determinant of a matrix of much lower
dimension.

4. The trace formula for resonances and classical scattering on graphs

In the spectral theory of bounded Hamiltonian systems, the most fundamental object of study
is the spectral density which consists of a sum of δ functions at the spectral points. For
open systems, it is replaced by the resonance density, which is defined on the real k line and
consists of an infinite sum of Lorentzians which are centred at kn = Re κn and have width
�n = −2 Im κn, where κn are the complex poles of the scattering matrix. In this section, we
shall express the resonance density for scattering graphs in terms of periodic orbits of their
compact part. This is the analogue of the trace formula for bounded graphs.

4.1. The trace formula

The resonance density dR(k) can be deduced from the total phase (k) = 1
i ln det S(M)(k) of

the scattering matrix [43]:

dR(k) ≡ 1

2π

d

dk
= −i

1

2π

∂

∂k
ln det S(M)(k). (25)

It is a smooth function for real k, and can be interpreted as the mean length of the delay
associated with the scattering at wave number k [26].

Using equation (12) and performing standard manipulations [42], we obtain the following
expression for the phase (k):

(k) − (0) = −2 Im ln det(I − S̃B(k; A)) + Lk (26)

where L = 2
∑B

b=1 Lb is twice the total length of the bonds of G̃.
Using the expansion

ln det(I − S̃B(k; A)) = −
∞∑

n=1

1

n
Tr S̃

n

B(k; A) (27)

we rewrite equation (26) as

(k) = (0) + Lk + 2 Im
∞∑

n=1

1

n
Tr S̃

n

B(k; A). (28)

On the other hand, using equation (9) we can write Tr S̃
n

B(k; A) as sums over n-periodic
orbits on the graph

Tr
(
S̃

n

B(k; A)
) =

∑
p∈Pn

npÃ
r

p ei(lpk+	p)r (29)

where the sum is over the set Pn of primitive periodic orbits whose period np is a divisor of
n, with r = n/np (primitive periodic orbits are those which cannot be written as a repetition
of a shorter periodic orbit). The amplitudes Ãp are the products of the bond–bond scattering
amplitudes σ̃

(i)
b,b′ along the primitive loops, i.e.

Ãp =
np∏
i=1

σ̃
(i)
b,b′ . (30)
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Substituting equations (28) and (29) in equation (25) one gets the resonance density

dR(k) = 1

2π
L +

1

π
Re

∞∑
n=1

∑
p∈Pn

nplprÃr

p ei(lpk+	p)r (31)

Equation (31) is an exact trace formula for the resonance density. The first term on the right-
hand side of equation (31) corresponds to the smooth resonance density, while the second
provides the fluctuating part. We note that the mean resonance spacing is given by

� = 2π

L
� 2π

2B〈L〉 (32)

and it is the same as the mean level spacing obtained for the corresponding bounded graph G
[12, 13].

4.2. Classical dynamics

We conclude this section with a discussion of the classical dynamics on the graph G̃. A
classical particle moves freely as long as it is on a bond. The vertices are singular points, and
it is not possible to write down the analogue of the Newton equations there. In [13, 14] it was
shown that it is possible to define a classical evolution on the graph: a Poincaré section on the
graph consists of the discrete set of directed bonds. The phase-space density at a (topological)
time n is the set of occupation probabilities ρb(n) of the directed bonds, and the classical
evolution is governed by a Markovian master equation. Applied to the compact part of a
scattering graph it reads

ρ̃b(n + 1) =
∑
b′

Ũ b,b′ ρ̃b′(n) (33)

where the transition matrix Ũ b,b′ is given by the corresponding quantum transition probability

Ũ ij,nm = |R̃ij,nm|2 = δj,n

∣∣σ (j)

ij,jm

∣∣2. (34)

Note that Ũ does not involve any metric information on the graph.
Due to loss of flux to the leads

∑
b′ Ũ bb′ < 1, and the phase-space measure is not

preserved, but rather, decays in time. The probability to remain on G̃ is

P̃ (n) ≡
2B∑
b=1

ρb(n) =
∑
b,b′

Ũ bb′ρb′(n − 1) � e−�clnP̃ (0) (35)

where exp(−�cl) is the largest eigenvalue of the ‘leaky’ evolution operator Ũ bb′ .
For the v-regular graph with σ̃ (i) given by (5) the spectrum of Ũ is restricted to the

interior of a circle with radius given by the maximum eigenvalue ν1 = (v − 1)τ 2 + ρ2 with the
corresponding eigenvector |1〉 = (1/2B)(1, 1, . . . , 1)T . Hence the decay rate �cl = −ln ν1

for regular Neumann graphs take the simple form

�cl = −ln(1 − τ 2) ≈ (2/(1 + v))2. (36)

We note that removing the leads from the vertices and turning G̃ into a compact graph G we
get �cl = 0 since in this case τ (i) = 0 (and ρ(i) = 1) and the phase-space measure is preserved
as expected.

The inverse decay rate Tcl = �−1
cl , gives the average classical delay time that the particle

spends within the interaction region. Injecting a particle from the leads to the scattering
domain, its probability of being on any bond randomizes, because at each vertex a Markovian
choice of one out of v directions is made. The longer a particle remains within the interaction
regime, the more scattering events it experiences. The set of trapped trajectories whose
occupancy decays exponentially in time is the analogue of the strange repeller in generic
Hamiltonian systems displaying ‘chaotic scattering’.
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Figure 2. Representative examples of scattering cross sections |S(V )
i,j |2 for Neumann graphs in

a regime of (a) isolated resonances (V = 15, v = 14 with corresponding 〈γ 〉k = 0.59) and
(b) overlapping resonances (V = 49, v = 14 with corresponding 〈γ 〉k � 2). The real parts of the
resonances in this energy interval are indicated by the vertical lines.

5. Statistical analysis of the S-matrix

So far we have developed the scattering theory of graphs, pointing out their similarity
with scattering systems which display chaotic scattering in the classical limit. Due to the
interference of a large number of amplitudes, the S-matrix fluctuates as a function of k, and its
further analysis calls for a statistical approach which will be the subject of this section. We shall
show that quantum graphs possess typical poles, delay time and conductance distributions,
Ericson fluctuations of the scattering amplitudes, and when considered statistically, the
ensemble of scattering matrices is very well reproduced by the predictions of RMT. At the
same time deviations from the universal RMT results, which are related to the system-specific
properties of some graphs, will be pointed out. The study of these deviations is especially
convenient for graphs because of the transparent and simple scattering theory developed in
terms of scattering trajectories.

An important parameter which is associated with the statistical properties of the S-matrix
is the Ericson parameter defined through the scaled mean resonance width as

〈γ 〉k ≡ 〈�n〉k
�

(37)

where 〈·〉k denotes spectral averaging and � is the mean spacing between resonances. The
Ericson parameter determines whether the resonances overlap (〈γ 〉k > 1) or are isolated
(〈γ 〉k < 1). Typical examples for the two extreme situations are shown in figure 2.

The degree of resonance overlap determines the statistical properties of the S-matrix. We
shall show in the following that the mean width can be approximated by the classical decay
rate 〈γ 〉k = γcl . For the v-regular graphs discussed above, we have

γcl ≡ �cl

�
≈ 4

2π

v

1 + v

V

1 + v
(38)

where we made use of equations (32) and (36). Thus changing v and V we can control the
degree of overlap allowing us to test various phenomena.
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In what follows, unless explicitly specified, we shall consider regular graphs with one
lead attached to each vertex, i.e. M = V . Finally, the widths are always scaled by the mean
spacing �, i.e. γn ≡ �n

�
.

5.1. The resonance width distribution

The resonance width distribution can be computed for a given graph in the following way.
Consider the complex κ = x + iy plane, where the zeros of the secular function

ζG̃(κ) = det(1 − S̃B(κ; A)) = f (x, y) + ig(x, y) (39)

are the poles of the S-matrix (resonances). The variables (x, y) are expressed in units of �.
On average, the number of resonances with real part, x ∈ [0,X] is X. The density of resonance
widths reads

P(γ ) = lim
X→∞

1

X

∫ X

0
δ(f (x, y = −γ ))δ(g(x, y = −γ ))

∣∣∣∣dζG̃(κ)

dκ

∣∣∣∣
2

y=−γ

dx. (40)

We used the Cauchy–Riemann theorem for the evaluation of the Jacobian (fxgy −fygx) which
multiplies the two δ functions that locate the complex zeros of ζG̃ . We now recall that the κ

dependence of S̃B(κ; A) comes from the factors eiκLb in (9). This implies that for a given y, ζG̃
is a quasi-periodic function of x. Moreover, expanding the determinant (39) it is not difficult to
show that the frequencies involved can be written as linear combinations of the bond lengths
λ = ∑

qbLb with integer coefficients qb = 0, 1 or 2. Since the bond lengths are rationally
independent, we find that ζG̃ depends on a finite number of incommensurate frequencies.
Expression (40) can be regarded as a ‘time’ integral over a trajectory on a multidimensional
incommensurate torus, which covers the torus ergodically. Hence, the integral can be replaced
by a phase-space average,

P(γ ) =
∫ 2π

0

dψ1

2π
· · ·

∫ 2π

0

dψJ

2π
δ(f ( ψ,−γ ))δ(g( ψ,−γ ))

∣∣∣∣∣dζG̃( ψ,−γ )

dκ

∣∣∣∣∣
2

. (41)

Here ψ denotes the vector of independent angles on the J -dimensional torus. Although the
above formula provides a general framework, its application to actual graphs is a formidable
task.

An important feature of the distribution of the resonances in the complex plane can be
deduced by studying the secular function ζG̃(κ). Consider ζG̃(κ = 0). If one of the eigenvalues
of the matrix R̃ (9) takes the value 1, ζG̃(k = 0) = 0 and because of the quasi-periodicity of
ζG̃ , its zeros reach any vicinity of the real axis infinitely many times. The largest eigenvalue of
the R̃-matrix for v-regular Neumann graphs is 1, and therefore the distribution of resonance
widths is finite in the vicinity of γ = 0. For generic graphs, the spectrum of R̃ is inside a
circle of radius λmax < 1. This implies that the poles are excluded from a strip just under the
real axis, whose width can be estimated by

�gap = −2 ln(|λmax|)/Lmax (42)

where Lmax is the maximum bond length. The existence of a gap is an important feature of
the resonance width distribution P(γ ) for chaotic scattering systems.

A similar argument was used recently in [23] in order to obtain an upper bound for the
resonance widths. It is

�max ∼ −2 ln(|λmin|)/Lmin (43)

where λmin and Lmin are the minimum eigenvalue and bond length, respectively.
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Figure 3. (a) The 5000 resonances of a single realization of a complete V = 5 graph with A �= 0
and M = V . The solid line marks the position of the gap γgap. (b) The distribution of resonance
widths P(γ ). The solid line is the RMT prediction (45). The difference P(γ ) − PCUE (γ ) is
shown in the inset.

The distribution of the complex poles for a generic fully connected graph with V = 5 is
shown in figure 3(a). The vertical line which marks the region from which resonances are
excluded was computed using (42).

Random matrix theory can provide an expression for the distribution of resonances. In
the case of non-overlapping resonances, perturbation theory shows that the resonance widths
are distributed according to the so-called χ2 distribution

P(γ ) = (βM/2)βM/2

〈γ 〉k�(βM/2)

(
γ

〈γ 〉k

)βM/2−1

exp(−γβM/2〈γ 〉k) (44)

where β = 1 (2) for systems which respect (break) time-reversal symmetry, and �(x) is the
gamma-function. Once 〈γ 〉k becomes large enough the resonances start to overlap, and (44)
does not hold. In the general case, Fyodorov and Sommers [36, 37] proved that the distribution
of scaled resonance widths for the unitary random matrix ensemble is given by

P(γ ) = (−1)M

�(M)
γ M−1 dM

dγ M

(
e−γπg sinh(γ π)

(γ π)

)
(45)

where the parameter g = 2(
1−〈SD 〉2

k

)−1 controls the degree of coupling with the channels (and it

is assumed that gi = g ∀i = 1, . . . ,M). For g � 1 (i.e. weak coupling regime) equation (45)
reduces to (44).

In the limit of M � 1, equation (45) reduces to the following expression [37]:

P(γ ) =



M

2πγ 2
for

M

π(g + 1)
< γ <

M

π(g − 1)

0 otherwise
. (46)

It shows that in the limit of large number of channels there exists a strip in the complex κ

plane which is free of resonances. This is in agreement with previous findings [27, 30, 44].
In the case of maximal coupling, i.e. g = 1, the power law (46) extends to infinity, leading to
divergences of the various moments of γ . Using (45) we recover the well-known Moldauer–
Simonius relation [30] for the mean resonance width [37]

〈γ 〉k = −
∑V

i=1 ln(|〈SD〉k|2)
2π

. (47)



3512 T Kottos and U Smilansky

0 1 2 3
0

0.5

1

1.5

γ

P
(γ

)

Figure 4. Resonance width distribution P(γ ) for a complete Neumann graph with M = V = 5
and A �= 0. The solid line is the RMT prediction (45).

The resonance width distribution for a V = 5 regular and generic graph is shown in
figure 3(b) together with the RMT prediction, which reproduces the numerical distribution
quite well. Figure 4 shows a similar comparison for a Neumann graph. In this case, a clear
deviation from the RMT prediction is observed. The main feature of P(γ ) is the relatively
high abundance of resonances in the vicinity of the real axis which is of dynamical nature and
conforms with the expectations (see related discussion above equation (42)).

5.2. The form factor

To investigate further the dynamical origin of the resonance fluctuations, we study the
resonance two-point form factor K(t). The main advantage of K(t) is that it allows us
to study the resonance fluctuations in terms of classical orbits. It is defined as

KR(t) ≡
∫

dχ ei2πχLtR2(χ) (48)

where t measures lengths in units of the Heisenberg length lH = L and R2(χ) is the excess
probability density of finding two resonances at a distance χ ,

R2(χ; k0) =
〈
d̃R

(
k +

χ

2

)
d̃R

(
k − χ

2

)〉
k

=
〈

�

2k0

∫ k0

−k0

d̃R

(
k +

χ

2

)
d̃R

(
k − χ

2

)
dk

〉
k0

. (49)

Above 〈· · ·〉k0 indicates averaging over a number of spectral intervals of size �k = 2k0, centred
around k0. Here d̃R(k) is the oscillatory part of dR(k) (see equation (31)). Substituting the
latter in equations (48) and (49) we obtain KR(t) in terms of periodic orbits and their repetitions

KR(t) = 2N
L2

∣∣∣∣∣
∑

p

∑
r

lpÃr
p ei(kla+	a)δN (t − rlp/L)

∣∣∣∣∣
2

(50)

where δN (x) = (sin(Nx/2))/(Nx/2) and N = �k

�
. A similar sum contributes to the spectral

form factor of the compact graph [13, 14]. However, the corresponding amplitudes are
different due to the fact that Ãp also contains the information about the escape of flux to the
leads.
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Figure 5. The form factors KR(t) for a complete V = 5 graph, with either generic or Neumann
boundary conditions, A �= 0 and M = V . The data were averaged over 5000 spectral intervals and
smoothed on small t intervals. Upper inset: KR(t) for small times. The solid line corresponds to
the numerical data for the pentagon with generic boundary conditions while the dashed line is the
approximant KR(t) ≈ K(t) exp(−γcl t). Lower inset: KR(t) calculated with high resolution. The
lengths of periodic orbits of the closed graph are indicated by arrows.

Assuming that all periodic orbits decay at the same rate, one would substitute Ãp with
Ap exp(−npγcl/2) where Ap is the weight assigned to the periodic orbit of the corresponding
closed system. Then equation (50) takes the following simple form:

KR(t) ≈ K(t) e−γcl t (51)

where K(t) is the form factor of the compact system [29]. Note that for t � γ −1
cl the

resonance form factor KR(t) is equal to K(t). This is reasonable since an open system cannot
be distinguished from a closed one during short times. This simple approximation is checked
in the inset of figure 5 (see dashed line) and it is shown to reproduce the numerical data rather
well in the domain t � 5. The asymptotic decay is dominated by the resonances which are
nearest to the gap, and it cannot be captured by the crude argument presented above. For
a generic graph, KR decays exponentially but with a rate given by γas = γgap (the best fit,
indicated in figure 5 by the dashed line, gives γas which agrees with γgap within 30%). For the
graph with Neumann boundary conditions, γgap = 0 and one expects an asymptotic power-law
decay. The corresponding best fit (see dashed line in figure 5) shows t−2.

In Hamiltonian systems in more than one dimension, the size of the spectral interval �k

where the spectral average is performed is limited by the requirement that the smooth part
of the spectral density is approximately constant. Here, instead we can take arbitrarily large
spectral intervals since the smooth spectral density is constant [13, 14]. This way, one can
reach the domain where the function KR(t) is composed of arbitrarily sharp spikes which
completely resolve the length spectrum for lengths which are both smaller and larger than lH .
In the inset of figure 5 we show the numerical K(t) calculated with high enough resolution.
In the same inset we mark with arrows the location of the lengths of short periodic orbits. We
note that as long as tL is shorter than the length of the shortest periodic orbit, K(t) = 0. With
increasing t, the periodic orbits become exponentially dense and therefore the peaks start to
overlap, giving rise to a quasi-continuum described approximately by equation (51).



3514 T Kottos and U Smilansky

0 5 10 15 20 25
–0.2

0.1

0.4
γ=0.59
γ=1.31
γ=1.96

0.0

0.4

0.8
γ=0.59
γ=1.31
γ=1.96

R
e(

C
(χ

))

χ

Im
(C

(χ
))

(a)

(b)

~
~

Figure 6. The autocorrelation function C̃(χ, ν = 1) for regular graphs with Neumann boundary
conditions. (◦) correspond to a graph with γ = 0.59 (isolated resonance regime), (∗) to a graph
with γ = 1.36 (intermediate regime) and (�) to a graph with γ � 2 (overlapping resonances
regime). The solid lines correspond to the theoretical expression (53): (a) The real part of
C̃(χ, ν = 1); (b) The imaginary part of C̃(χ, ν = 1).

5.3. Ericson fluctuations

As was mentioned above, the scattering cross sections are dominated by either isolated
resonances, or by overlapping resonances whose fluctuations follow a typical pattern. These
patterns were first discussed by Ericson [45] in the frame of nuclear physics and were shown
to be one of the main attributes of chaotic scattering [26]. The transition between the two
regimes is controlled by the Ericson parameter (37). Typical fluctuating cross sections are
shown in figure 2.

A convenient measure for Ericson fluctuations is the autocorrelation function

C(χ; ν) = 1

�j

jmax∑
j=jmin

(〈
S

(M)

j,j+ν

(
k +

χ

2

)
S

(M)�

j,j+ν

(
k − χ

2

)〉
k
− 〈Sj,j+ν 〉k〈S�

j,j+ν 〉k
)

(52)

where an additional average over �j = jmax − jmin + 1 elements of the same scattering matrix
was introduced for better statistical processing. To evaluate equation (52) we substitute the
expression of the S-matrix from equation (14) and split the sum over trajectories into two
distinct parts: the contributions of short trajectories are computed explicitly by following the
multiple scattering expansion up to trajectories of length lmax. The contributions of longer
orbits are approximated by using the diagonal approximation, which results in a Lorentzian
with a width γEr. Including explicitly up to n = 3 scattering events we get,

C(χ; ν) ≈ Geilmaxχ
γEr

γEr − iχ
+

1

�j

jmax∑
j=jmin

[
τ 4 eiχLj,j+ν + τ 4ρ4 e3iχLj,j+ν

+ τ 6
∑

m�=j,j+ν

eiχ(Lj,m+Lm,j+ν )

]
(53)

where G is determined by the condition C(χ = 0; ν) = 1. The interplay between the
contributions of long and short periodic orbits is shown in figure 6 where we report the
real and the imaginary parts of the scaled autocorrelation function C̃(χ) = C(χ)/Re[C(0)]



Quantum graphs: a simple model for chaotic scattering 3515

0 5 10 15 20 25
–0.2

0.1

0.4
γ=0.59
γ=1.31
γ=1.96

0.0

0.4

0.8
γ=0.59
γ=1.31
γ=1.96

R
e(

C
(χ

))

χ

Im
(C

(χ
))

(a)

(b)

~
~

Figure 7. The autocorrelation function C̃(χ, ν = 1) for the same graphs as in figure 6. The solid
lines correspond to the RMT predictions [46]: (a) The real part of C̃(χ, ν = 1); (b) The imaginary
part of C̃(χ, ν = 1).
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Figure 8. The mean resonance width 〈γ 〉k , autocorrelation width γEr, the classical expectation γcl

and the RMT prediction (47) versus V for various graphs with Neumann boundary conditions and
constant valency v = 14.

separately. For overlapping resonances, the autocorrelation function is well reproduced by
a Lorentzian while for the case of isolated resonances one can clearly see the contributions
of short paths. In figure 7, we present the same numerical data for C̃(χ) together with the
RMT predictions [46]. One can clearly see that although for small χ we have a relative
good agreement between our numerical data and the RMT predictions, for C̃(χ), there are
considerable deviations for large values of the argument χ . This is due to the existence of
short trajectories which are system specific and therefore cannot be captured by the universal
RMT results.

In figure 8, we report the mean resonance width 〈γ 〉k calculated numerically for
various graphs, the parameter γEr extracted from the best fit of the numerical C(χ) with
equation (53), together with the RMT prediction equation (47) and the classical expectation
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given by equation (38). The results justify the use of the classical estimate especially in the
limit V → ∞ for fixed v/V (which is the analogue of the semiclassical limit). In this limit,
the RMT and the classical estimates coincide.

5.4. S-matrix statistics

One can further check the applicability of RMT by studying the entire S(M)-matrix distribution
function. The probability density of M × M unitary S(M)-matrices is defined in a
M + βM(M − 1)/2 parameter space and was found first in [31] to be given by the Poisson
kernel

dPS̄(S
(M)) = pS̄(S) dµ(S) = Cβ

[det(1 − S̄S̄†)](βM+2−β)/2

|det(1 − S̄S̄†)|(βM+2−β)
dµβ(S) (54)

where Cβ is a normalization constant which depends on the symmetry class. All system-
specific relevant information are included in the ensemble average S(M)-matrix, defined as
S̄i,j = 〈SD〉k . For regular graphs, S̄ is proportional to the unit matrix, i.e. S̄i,j = 1−v

1+v
δi,j ,

while the eigenvectors are distributed uniformly and independently of the eigenphases. The
invariant measure dµβ(S) is given as

dµβ(S(M)) =
∏
i<j

|eiφi − eiφj |β
M∏
i=1

dφi d� (55)

where d� is the solid angle on the M-dimensional unit hypersphere.
For large M values, a numerical check of this probability distribution is prohibitive.

However, for M = 2 one can easily find the exact form of (54) and compare it with the
numerical results. The resulting distribution of the eigenphases φ1, φ2 of the 2 × 2 scattering
matrices of regular graphs is given by

dPS̄(S
(2))

=
Cβ

(
4v

(v+1)2

)β+2
sinβ

(
ω
2

)
[
1 − 4S̄ cos

(
ω
2

)
cos ψ + 2S̄

2(2 cos2
(

ω
2

)
+ cos(2ψ)

) − 4S̄
3 cos ψ cos

(
ω
2

)
+ S̄

4] β+2
2

dω dψ

(56)

where we used the notation ψ = φ1+φ2

2 and ω = φ1 − φ2. Integrating equation (56) over ω,ψ

we get the corresponding distribution functions PS̄ (ω) and PS̄ (ψ). Our numerical results for
an ensemble of S-matrices calculated for different realizations of the lengths of the graphs
are reported in figure 9 together with the RMT predictions (56) for a regular graph with two
channels. An overall good agreement is seen both for A = 0 and A �= 0.

5.5. Partial delay times statistics

The Wigner delay time captures the time-dependent aspects of quantum scattering. It can be
interpreted as the typical time for which an almost monochromatic wave packet remains in the
interaction region. It is defined as

TW = 1

2iM
Tr

[
S(M)† dS(M)(k)

dk

]
= 1

2M

M∑
i=1

∂φi(k)

∂k
(57)

where φi are the eigenphases of the S(M)-matrix. The partial derivatives ∂φi(k)

∂k
are the

partial delay times and their statistical properties were studied extensively within the RMT
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Figure 9. The P(ψ) and P(ω) distributions for a 2 × 2 scattering matrix S. The solid lines
correspond to the predictions of RMT (56). The upper panels correspond to A = 0, the lower
panels to A �= 0.

[35, 37, 39]. For the one-channel case it was found [37, 39] that the probability distribution
of the scaled (with the mean level spacing �) partial delay times Ti = �

2π

∂φi(k)

∂k
is

P (β)

S̄
(T ) =

(
β

2

)β/2

�
(

β

2

)
T 2+β/2

∫ 2π

0
P(φ)1+β/2 e− β

2T
P(φ) dφ (58)

where P(φ) is the Poisson kernel (equation (54)). The general case of M-equivalent open
channels was studied in [35, 37] where it was found that for broken time-reversal symmetry
the probability distribution of partial delay times is

P(T ) = (−1)M

M!T M+2

∂M

∂(T −1)M

[
e−g/T I0

(
T −1

√
(g2 − 1)

)]
(59)

where I0(x) stands for the modified Bessel function.
To investigate the statistical properties of the partial delay times for our system we had

calculatedP(T ) for various graphs. The resulting distributions are shown in figure 10 together
with the RMT predictions (58) and (59). An overall agreement is evident. Deviations appear in
the short time regime (i.e. short orbits), during which the ‘chaotic’ component due to multiple
scattering is not yet fully developed [28].

5.6. Conductance distribution

Due to the recent experimental investigation of electronic transport through mesoscopic devices
[47], the study of the statistical properties of the conductance gained some importance. For a
device connected to reservoirs by leads, the Landauer–Büttiker formula relates its conductance
G to the transmission coefficient TG by the expression G = (2e2/h̄)TG. When each lead
supports one channel, the transmission coefficient can be written in terms of the S(M)-matrix
as

TG =
M∑

i �=j

∣∣∣S(M)
i,j

∣∣∣2 = 1 −
∣∣∣S(M)

j,j

∣∣∣2 (60)

where j is the input channel.
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Figure 10. The distribution of the scaled partial delay times T for various graphs with Neumann
boundary conditions. The dashed lines correspond to the RMT expectation (58) and (59): (a) One
channel and A = 0; (b) M = V channels and A �= 0.

In the absence of direct processes, the distribution of conductance P(TG) for an arbitrary
number of channels was worked out within RMT, and the results describe in a satisfactory
way both the numerical calculations and the experimental data (for a review see [40] and
references therein). However, in the cases where direct processes appear significant, one must
use Poisson’s kernel (54) in its full generality. This is exactly the case with Neumann graphs
since S̄ �= 0. The probability distribution of the transmission TG is then

P(TG) =
∫

δ


TG −

∑
i �=j

|Si,j |2

PS̄ (S) dµ(S). (61)

For the case M = 2 and for a diagonal S̄-matrix (only direct reflection) with equivalent
channels S̄11 = S̄22 = S̄, equation (61) can be worked out analytically [34] in the limit of
strong reflection and TG � 1. The resulting expression is

Pβ=1(TG) = 8

π2(1 − S̄
2
)
T

−1/2
G TG � (1 − S̄2)2. (62)

For β = 2 one can compute in a closed form the whole distribution [40]

Pβ=2(TG) = (1 − S̄
2
)
(1 − S̄

4
)2 + 2S̄2(1 + S̄

4
)TG + 4S̄

4
T 2

G

((1 − S̄
2
)2 + 4S̄

2
TG)5/2

. (63)

Our numerical results for a regular graph with two leads are plotted in figure 11 together
with the RMT results (61), (62) and (63). Note that the small conductances are emphasized,
because of the presence of direct reflection and no direct transmission. At the same time, the
most pronounced differences between the two symmetry classes are for TG � 1, where for
β = 1 the conductance distribution diverges while it takes a finite value for β = 2.

6. Scattering from star graphs

So far, we have studied scattering from well-connected graphs, and we have shown that
many statistical properties of the scattering matrix are described by RMT. We shall dedicate
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Figure 11. Conductance distribution P(TG) for a graph with M = 2 channels. (a) Time-reversal
symmetry is preserved (A = 0). The solid line is the RMT result equation (61) where we had
used equation (56) for the Poisson kernel while the dashed line is the approximate expression (62).
(b) Broken time-reversal symmetry (A �= 0). The solid line is the RMT result equation (63).

this section to demonstrating the statistical properties of the S-matrix for graphs which have
non-uniform connectivity.

A representative example of this category is the ‘star’ (or ‘hydra’) graphs [14, 16]. They
consist of v0 bonds, all of which emanate from a single common vertex labelled with the index
i = 0. The vertex at i = 0 will be referred to in the following as the head. The total number
of vertices for such a graph is V = v0 + 1, and the vertices at the end of the bonds will be
labelled by i = 1, . . . , v0. The star is a bipartite graph, a property which implies, e.g., that
there exist no periodic orbits of odd period [14]. To turn a star graph into a scattering system
we add a lead to its head.

It is simple to derive the scattering matrix S = S(M=1) for a Neumann star. It reduces to
a phase factor,

S(k) ≡ eiφ(k) = −∑v0
i=1 tan(kLi) + i∑v0

i=1 tan(kLi) + i
. (64)

The spectrum {kn} of the closed system can be identified as the set of wave vectors for
which S(k) equals 1, which implies that no current flows in the lead. The resulting quantization
condition is

1 − S(k) = 0 ←→ 2
∑v0

i=1 tan(knLi)∑v0
i=1 tan(kLi) + i

= 0 (65)

which is satisfied once
∑v0

i=1 tan(knLi) = 0. This is identical with the condition derived
in [14].

The poles {κn} are the complex zeros of
v0∑

i=1

tan(κnLi) + i = 0. (66)

To first order in 1
v0

, we get

�(1)
n = 1∑v0

i=1
Li

cos(2knLi ) + 1

(67)
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Figure 12. The rescaled resonance width distribution P(γ ) for a star graph with v0 = 20. The
solid line is the RMT prediction equation (44).

which can be used as a starting point for the exact evaluation of the poles. For the latter one
has to perform a self-consistent search for the complex zeros of the secular equation (66). This
is a time-consuming process and the correct choice of the initial conditions is very important.

In figure 12, we present our numerical results for the distribution of rescaled resonance
widths P(γ ) for a star with v0 = 20. The data are in excellent agreement with the RMT
expectation given in equation (44). We point out that in this case the coupling to the continuum
is weak since g � 10 � 1 and therefore the χ2 distribution with M = 1 is applicable.

Using equation (64) we get the following relation for the scaled delay times:

T (k) = �

2π

2
∑v0

i=1
Li

cos2(kLi )

1 +
(∑v0

i=1 tan kLi

)2 (68)

which can be used to generate P(T ). The latter is reported in figure 13 together with the
RMT prediction (59). We note that although the tail of the distribution agrees reasonably
well with the RMT prediction, there are considerable deviations at the origin. Their origin
is associated with the fact that stars are bipartite graphs and thus all periodic orbits are of
even period. As a result the body of the distribution P(T ) is moved towards larger delay
times T.

A peculiarity of the star graph is that the mean time delay is twice as large as the expected
one from semiclassical considerations. To be more specific, for a generic chaotic system
coupled to M channels, one has [41]

〈T 〉k � M + 1

M

�

2π
〈lp〉k (69)

where 〈lp〉k � �−1
cl is the average length of the classical paths inside the interaction area.

Thus for the star with M = 1, we would expect based on equation (69) that 〈T 〉k � �
2π

2�−1
cl .

However, due to the fact that all the periodic orbits on the star graph are self-tracing we get an
additional factor of 2 and thus

〈T 〉k = �

2π
4�−1

cl . (70)
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Figure 13. The distribution of the scaled partial delay times P(T ) for a star graph with v0 = 20.
The dashed line is the RMT prediction equation (58). In the upper inset we show the same data in
a double logarithmic plot. In the lower inset we plot the numerical results for 〈T 〉k (◦). The solid
line is the asymptotic value 1 expected from semiclassical considerations.

The corresponding classical decay rate �cl can be found exactly by a direct evaluation of
the eigenvalues of the classical evolution operator Ũ . One can easily show that

Ũ =
(

0 1
(σ̃ (0))2 0

)
(71)

where σ̃ (0) is the v0 × v0 vertex scattering matrix at the star head as defined in equation (5),
while 1 denotes the v0 × v0 identity matrix. The square of the classical evolution operator Ũ

2

has a block diagonal form

Ũ
2 =

(
(σ̃ (0))2 0

0 (σ̃ (0))2

)
(72)

and its spectrum consists of the values 1 − 4
(1+v0)

2 with multiplicity 2 and 1 − 4
(1+v0)

with

multiplicity 2v0 − 2. Therefore the spectrum of Ũ is

λu = ±
√

1 − 4

(1 + v0)2

= ±
√

1 − 4

1 + v0
with multiplicity v0 − 1. (73)

For short times where the classical evolution is applicable, the dominant eigenvalue is

λu =
√

1 − 4
1+v0

leading to a classical decay rate

�cl � 2

1 + v0
. (74)

Substituting equation (74) we get eventually that 〈T 〉k = 1+v0
v0

−−→v0→∞ 1 which indicates that the
mean time a particle spends inside the interaction regime is proportional to the Heisenberg
time. Our numerical calculations reported in the lower inset of figure 13 agree nicely with the
semiclassical prediction (70).
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Figure 14. The distribution of phases P(φ) of the SH -matrix for two stars with v0 = 15 and
v0 = 30. The solid lines are the corresponding theoretical predictions (77).

Finally, we analyse the distribution of S when generated over different realizations of the
lengths of the bond. For the one-channel case this is equivalent to the distribution P(φ) of
the phase of the S-matrix. To derive the latter, it is convenient to rewrite the S-matrix in the
following form:

S ≡ exp(iφ) = (−K + i)/(K + i) (75)

with K = ∑v
i=1 tan(kLi). The probability distribution of K is

P(K) =
〈
δ

(
K −

v∑
i=1

tan(kLi)

)〉
L

= 1

2π

∫
eiKx dx

(
1

δL

∫ Lmax

Lmin

dL e−ix tan(kL)

)v

= 1

π

v

v2 + K2
. (76)

Thus, with S̄ ≡ 〈S〉 = 1−v
1+v

, we get

P(φ) = P(K)

∣∣∣∣dK

dφ

∣∣∣∣ = 1

2π

1 − S̄
2

1 + S̄
2 − 2S̄ cos φ

. (77)

Equation (77) reproduces the Poisson’s kernel for a one-channel scattering matrix, derived in
the framework of RMT [37]. The conditions under which this result is derived in [37] are
fulfilled exactly in the present case. Our numerical results are reported in figure 14 and are in
excellent agreement with the theoretical prediction equation (77).

7. Conclusions

In this paper, we turned quantum graphs into scattering systems. We show that they combine
the desirable features of both behaving ‘typically’ and being mathematically simple. Thus,
we propose them as a convenient tool to study the generic behaviour of chaotic scattering
systems.
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The classical dynamics on an open graph was defined, and the classical staying probability
was shown to decay in an exponential way. The resulting classical escape rate was calculated
and used to describe the properties of the corresponding quantum system. The scattering matrix
was written in terms of classical orbits and an exact trace formula for the resonance density
was found. A gap for the resonance widths has been obtained for ‘generic’ graphs and its
absence was explained for Neumann graphs. An analysis of the cross-section autocorrelation
function was performed and its non-universal characteristics were explained in terms of the
short classical scattering trajectories. Finally, due to the relative ease with which a large
number of numerical data can be computed for the graph models, we performed a detailed
statistical analysis of delay times, resonance widths and distribution of the S-matrix. Our
results compare well with the predictions of RMT indicating that our model can be used to
understand the origin of the connection between RMT and the underlying classical chaotic
dynamics.

The results reported here complete our previous investigations on graphs. We conclude
that quantum graphs may serve as a convenient paradigm in the area of quantum chaos, both
for spectral and scattering studies.
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